

# **CLASSROOM CONTACT PROGRAMME**

# SAMPLE PAPER CLASS - XII<sup>th</sup> GSEB (ENGLISH MEDIUM)

Test Type: FULL SYLLABUS Test Pattern: BOARD PATTERN

# **MATHEMATICS**

Time Allowed: 3 Hours Maximum Marks: 100

- Please check that this question paper contain **09** printed pages.
- Please check that this question paper contains **68** questions.
- Please write down the serial number of the question before attempting it.

#### IMPORTANT INSTRUCTIONS

- **1.** All questions are compulsory.
- 2. There are 2 Sections A and B respectively.

**SECTION-A** (Objective Questions)

Questions No. 1 to 50 carry 1 Marks each = 50 Marks (Only one correct)

**SECTION-B** (Subjective Questions)

Questions No. 51 to 58 carry 2 Marks each = 16 Marks

Questions No. 59 to 64 carry 3 Marks each = 18 Marks

Questions No. 65 to 68 carry 4 Marks each = 16 Marks

You may use the following values of physical constants wherever necessary:  $c = 3 \times 10^8 \text{ ms}^{-1}$ ,  $h = 6.63 \times 10^{-34} \text{ Js}$ ,  $e = 1.6 \times 10^{-19} \text{ C}$ ,  $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$ ,

$$c = 3 \times 10^{6} \text{ ms}^{-1}$$
,  $h = 6.63 \times 10^{-34} \text{ Js}$ ,  $e = 1.6 \times 10^{-17} \text{ C}$ ,  $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$ 

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}, \ \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}, \ \text{m}_e = 9.1 \times 10^{-31} \text{ kg}$$

Mass of neutron  $1.675 \times 10^{-27}$  kg, Mass of proton  $1.673 \times 10^{-27}$  kg

Avogadro's number =  $6.023 \times 10^{23}$  per gram mole

Boltzmann's constant  $1.38 \times 10^{-23} \text{ JK}^{-1}$ 

HELPLINE NUMBER: AHMEDABAD: 079-49033100, BARODA: 8511136281, 8511136282

SURAT: 8511143785, 8511186070, RAJKOT: 8511143783

# **MATHEMATICS**

## PART - A

- \* Choose correct answer from the given alternatives and write it. [Each carries 1 Mark] [50]
- 1.  $A = \{1, 2, 3\}$  the number of equivalence relations containing (1, 3) is .....
  - (1) 1

(2) 2

- (4) 8
- 2. If  $f:[0,\pi] \to [-1,1]$  is one-one and onto, then .... is possible.
  - (1) f(x) = |x|
- $(2) f(x) = \sin x$
- (3)  $f(x) = x^3$
- (4)  $f(x) = \cos x$

- If a \* b =  $\frac{ab}{100}$  on Q<sup>+</sup>, inverse of 0.1 is ..... 3.
  - (1) 100000
- (2) 10000
- (3) 1000
- (4) 10
- If  $f: R \to R$ ,  $g: R \to R$ , f(x) = 3x 2 and  $g(x) = x^2 + 1$  then  $(gof^{-1})(2) = ...$ . 4.
  - (1)  $\frac{25}{9}$
- (2)  $\frac{25}{3}$
- (3)  $\frac{16}{9}$
- $(4) \frac{4}{3}$

- If  $\sin (2 \tan^{-1} x) = 1$ , then x = ..... 5.
  - $(1) \frac{1}{2}$
- (2)  $\frac{1}{\sqrt{2}}$
- (3) 1

(4)  $\sqrt{3}$ 

- If  $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$ , then  $\cos^{-1} x + \cos^{-1} y = \dots$ .
  - $(1) \frac{5\pi}{2} \qquad (2) \frac{\pi}{3}$
- $(3) \frac{\pi}{6}$
- $(4) \pi$
- If  $\sin^{-1}\left(\frac{x}{13}\right) + \sec^{-1}\left(\frac{13}{5}\right) = \frac{\pi}{2}$ , then the value of x is .......

- (4) 13

- The value of  $\tan\left(\frac{1}{2}\cos^{-1}\frac{3\sqrt{5}}{7}\right)$  is .....
  - (1)  $-\frac{\sqrt{5}+1}{4}$  (2)  $\frac{7-3\sqrt{5}}{2}$  (3)  $\frac{7+3\sqrt{5}}{2}$
- (4)  $\frac{\sqrt{5-1}}{4}$
- If  $D = \begin{vmatrix} 2 & \cos\theta & 2 \\ -\cos\theta & 2 & \cos\theta \\ -2 & -\cos\theta & 2 \end{vmatrix}$ , then value of D lies in the interval ....... 9.
  - $(1) (16, \infty)$
- (2) (16, 20)
- (3) [12, 16]
- (4) [16, 20]
- If l, m, n are real numbers such that  $l^2 + m^2 + n^2 = 0$  then  $\begin{vmatrix} 1 + l^2 & lm & ln \\ lm & 1 + m^2 & mn \\ nl & mn & 1 + n^2 \end{vmatrix} = \dots$ **10.** 
  - (1) 0

(2) 1

- (3) l + m + n + 2
- (4) lmn 1



- If  $f(\alpha) = \begin{vmatrix} 1 & \alpha & \alpha^2 \\ \alpha & \alpha^2 & 1 \\ \alpha^2 & 1 & \alpha \end{vmatrix}$ , then  $f(\sqrt[3]{3}) = \dots$ .
  - (1) -4
- (2) 4

(3) 2

- (4) -2
- A is  $2 \times 3$  matrix, if A<sup>T</sup>B and BA<sup>T</sup> are defined, then B is a ...... matrix. **12.**
- $(2) 3 \times 2$
- $(3) 2 \times 2$
- $(4) \ 3 \times 3$

- If  $\begin{bmatrix} 2 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 2 & 1 & 1 \\ 2 & 1 & 0 & x \end{bmatrix} = 0$ , then  $x = \dots$ .
  - (1) -3
- (2) 3

(3) 6

- (4) -6
- If A (adj A) = 4I, where A is  $3 \times 3$  matrix, then  $|A| = \dots$ .
  - (1) 1

(2) 2

(4) 8

- **15.** If  $A = \begin{bmatrix} \alpha^2 & 5 \\ 5 & -\alpha \end{bmatrix}$  and  $|A^{10}| = 1024$ , then  $\alpha = \dots$ .
  - (1) 2

- (2) -2
- (3) 3

(4) -3

- 16.  $\frac{d^2x}{dv^2} = ....$

- $(1) \frac{1}{\frac{d^2 y}{dx^2}} \qquad (2) \frac{1}{\left(\frac{dy}{dx}\right)^2} \qquad (3) -\frac{1}{\left(\frac{dy}{dx}\right)^2} \qquad (4) -\frac{1}{\left(\frac{dy}{dx}\right)^3} \cdot \frac{d^2 y}{dx^2}$
- **17.** If  $f(x) = log_3(log_5x)$ , then f'(x) = ...

- (1)  $\frac{1}{x \log_{2} x \log 3}$  (2)  $\frac{1}{x \log_{2} x}$  (3)  $\frac{1}{x \log_{2} 3 \log_{2} 5}$  (4)  $\frac{1}{x \log_{2} x \log_{2} 5}$
- If we apply the Rolle's theorem to  $f(x) = e^x \cos x$ ,  $x \in \left| \frac{\pi}{2}, \frac{3\pi}{2} \right|$ , then  $c = \dots$ .
  - $(1) \ \frac{3\pi}{4}$
- (2)  $\frac{5\pi}{4}$
- $(3) \pi$
- (4)  $\frac{15\pi}{4}$

- 19.  $\int \frac{3\tan\frac{x}{3} \tan^3\frac{x}{3}}{1 3\tan^2\frac{x}{2}} dx = \dots + c$ 
  - (1) logltan xl
- $(2) \log|\cos x| \qquad (3) \sec^2 x$
- (4) -log |sec x|



20. 
$$\int \frac{dx}{x^2(x^4+1)^{\frac{3}{4}}} = \dots + c$$

$$(1) \left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}}$$

(2) 
$$-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}$$

$$(1) \left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}} \qquad (2) - \left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}} \qquad (3) - \frac{1}{4} \left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}}$$

21. 
$$\int \cos^{-\frac{3}{7}} x \sin^{-\frac{11}{7}} x dx = \dots .$$

(1) 
$$\log \left| \sin^{\frac{4}{7}} x \right| + c$$
 (2)  $\frac{4}{7} \tan^{\frac{4}{7}} x + c$  (3)  $-\frac{7}{4} \tan^{\frac{4}{7}} x + c$  (4)  $\log \left| \cos^{\frac{3}{7}} x \right| + c$ 

(2) 
$$\frac{4}{7} \tan^{\frac{4}{7}} x + c$$

(3) 
$$-\frac{7}{4} \tan^{-\frac{4}{7}} x + c$$

(4) 
$$\log \left| \cos^{\frac{3}{7}} x \right| + c$$

- A problem in mathematics is given to three students whose probability of solving it are  $\frac{1}{2}, \frac{1}{2}, \frac{1}{3}$ . The 22. probability that at least one of them solves the problem is .......
  - $(1) \frac{1}{27}$
- (2)  $\frac{19}{27}$
- $(3) \frac{8}{27}$
- $(4) \frac{26}{27}$
- If A and B are two independent events such that  $P(A) = \frac{1}{2}$ ,  $P(B) = \frac{1}{5}$ , then  $P(A \mid A \cup B) = \dots$ . 23.
  - (1)  $\frac{1}{\epsilon}$
- (2)  $\frac{1}{2}$
- $(3) \frac{1}{10}$
- $(4) \frac{5}{6}$
- 24. A fair die is rolled 6 times. If "getting an even number" is a success, then probability of 5 successes is
  - $(1) \frac{5}{64}$
- (2)  $\frac{3}{32}$
- (3)  $\frac{63}{64}$
- $(4) \frac{5}{6}$
- 25. If the probability of non-defective screw is 0.9, the mean and standard deviation for the binomial distribution of defective screws in a total of 500 screws are respectively ......
  - (1) 50, 6.71
- (2) 500, 6.71
- (3) 50, 45
- (4) 50, 7.71
- The probability of India winning a one day match against West Indies is  $\frac{1}{2}$ . The probability that in a 26. 5 match series Indies India's Second win occurs at the third one day is ..... .
  - (1)  $\frac{1}{0}$
- (2)  $\frac{1}{4}$
- (3)  $\frac{1}{2}$
- 27. Let x and y be optimal solution of a linear programming problem, then ......
  - (1)  $z = \lambda x + (1 \lambda)y$ ,  $\lambda \in R$  is also an optimal solution
  - (2)  $z = \lambda x + (1 \lambda)y$ ,  $0 \le \lambda \le 1$  gives an optimal solution
  - (3)  $z = \lambda x + (1 + \lambda)y$ ,  $0 \le \lambda \le 1$  gives an optimal solution
  - (4)  $z = \lambda x + (1 + \lambda)y$ ,  $\lambda \in R$  gives an optimal solution



- Solution of the following linear programming problem : Minimize z = -3x + 2y subject to  $0 \le x \le 4$ , 1 28.  $\leq$  y  $\leq$  6, x + y  $\leq$  5 is .......
  - (1) -10
- (2) 0

(3) 2

(4) 10

- 29.  $f(x) = (x + 2)e^{-x}$  is increasing in ....  $x \in R$ 
  - $(1) (-\infty, -1)$
- $(2) (-1, -\infty)$
- $(3) (2, \infty)$
- $(4) R^{+}$
- **30.** The rate of change of volume of a cylinder w.r.t. radius whose radius is equal to its height is
  - (1) 4 (area of base)
- (2) 3 (area of base)
- (3) 2 (area of base)
- (4) (are of base)
- 31. The normal to  $x^2 = 4y$  passing through (1, 2) has equation .....
- (2) x + y 3 = 0
- (3) 2x + 3y 8 = 0 (4) x y + 1 = 0
- The local minimum value of  $x^2 + \frac{16}{x}$  is ....  $x \in R \{0\}$ **32.** 
  - (1) 12
- (2) 22
- (3) -12
- (4) 2
- For what values of k,  $f(x) = x^2 kx + 20$  is strictly increasing on [0, 3]
- (2) 0 < k < 1
- (3) 1 < k < 2
- (4) 2 < k < 3

- 34.  $\int x^5 e^{x^2} dx = \frac{e^{x^2}}{2} f(x) + c$ , then f(x) = ...

  - (1)  $x^4 2x^2 + 2$  (2)  $x^4 + 2x^2 + 2$
- (3)  $x^4 2x^2 2$  (4)  $x^4 + 2x^2 2$
- **35.** If  $I_n = \int (\log x)^n dx$  then  $I_n + n I_{n-1} = ...$ 
  - $(1) x(\log x)^n$
- (2)  $(x log x)^n$
- $(3) (\log x)^{n-1}$
- (4)  $n(\log x)^n$

- 36.  $\int \left[ \log \{ \log(\log x) \} + \frac{1}{\log x \cdot \log(\log x)} \right] dx = \dots + c$ 
  - (1)  $x \log \{\log(\log x)\}$  (2)  $e^x \log(\log(\log x))$  (3)  $x \log(\log x)$
- $(4) \times \log x$

- 37.  $\int a^{x} [f'(x) + f(x) \log a] dx = ... + c. \qquad (a \in \mathbb{R}^{+} \{1\})$ 

  - (1)  $a^x \cdot \log a f'(x)$  (2)  $a^x \cdot f(x)$
- (3)  $a^x \cdot f(x)$
- (4)  $a^x \cdot \log a \cdot f(x)$

- 38.  $\int_{-\infty}^{\infty} \left[ \sqrt{x} + 2 \right] dx = \dots$  [.] represents G.I.F.
  - (1) 31
- (2) 32
- (3) 23
- (4) 18

- 39.  $\int_{0}^{4014} \frac{2^{x}}{2^{x} + 2^{4014 x}} dx = \dots$ 
  - (1) 2007
- (2) 4014
- $(3) 2^{4014}$
- $(4) 2^{2007}$

- **40.**  $\int_{0}^{\pi} e^{\sin^2 x} \cos^3 x dx = ...$ 
  - (1) -1
- (2) 0

(3) 1

 $(4) \pi$ 



| 41. | Area of the region | bounded by the | e circle $x^2 + v^2 =$ | 4 and lines $x = 0$ | x = 2 in the | first quadrant is |
|-----|--------------------|----------------|------------------------|---------------------|--------------|-------------------|

 $(1) \pi$ 

- (2)  $\frac{\pi}{2}$
- $(3) \frac{\pi}{2}$
- (4)  $\frac{\pi}{4}$
- Find area of the region bounded by the parabola  $y^2 = 4ax$  and its latus rectum x = a42.
  - (1)  $\frac{8}{2}a$
- (2)  $\frac{4}{3}a^2$
- (3)  $\frac{8}{2}a^2$
- An integrating factor of differential equation  $\frac{dy}{dx} = \frac{1}{x+y+2}$  is ..... 43.

- (2)  $e^{x+y+2}$

- The length of subnormal to the hyperbola  $x^2 y^2 = 8$  at the point (3, 1) is ... 44.
  - (1) 3

(2)  $\frac{1}{3}$ 

(3) 8

(4)  $\frac{1}{8}$ 

- The general solution of  $(x + 2y^3) \frac{dy}{dx} y = 0$  is 45.
  - $(1) x = y^3 + Ay$

- (2) y(1 xy) = Ax (3) x(1 xy) = Ay (4) x(1 + xy) = Ay
- If position vectors of vertices of  $\triangle ABC$  are  $\overline{a}, \overline{b}$  and  $\overline{c}$  then vector perpendicular to its plane is 46.

  - (1)  $\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}$  (2)  $\frac{\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}}{|\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}|}$  (3)  $\frac{\overline{a} \times \overline{b}}{|\overline{a} \times \overline{b}|}$
- (4) None of these
- If for  $\triangle ABC$ ,  $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$  and  $\overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$  then length of the medium drawn from A is : **47.** 
  - $(1) \sqrt{288}$
- (2)  $\sqrt{18}$
- $(3) \sqrt{72}$
- $(4) \sqrt{33}$
- If  $\overline{x} = (1, 2, 4), \overline{y} = (-1, -2, k), k \neq -4$  then  $|\overline{x} \cdot \overline{y}| \dots |\overline{x}| |\overline{y}|$ 48.
  - (1) <

- $(4) \ge$
- Line passing through (2, -3, 1) and (3, -4, -5) intersects ZX plane at .... 49.
  - (1) (-1, 0, 13)
- (2) (-1, 0, 19)
- (3)  $\left(\frac{13}{6}, 0, \frac{-19}{6}\right)$  (4) (0, -1, 13)
- Equation of the line L passing through A(-2, 2, 3) and perpendicular to  $\overrightarrow{AB}$  is ..... where coordinates **50.** of B(13, -3, 13).
  - (1)  $\frac{x-2}{3} = \frac{y+2}{13} = \frac{z+3}{2}$

(2)  $\frac{x+2}{3} = \frac{y-2}{13} = \frac{z-3}{2}$ 

(3)  $\frac{x+2}{15} = \frac{y-2}{-5} = \frac{z-3}{10}$ 

(4)  $\frac{x-2}{15} = \frac{y+2}{-5} = \frac{z+3}{10}$ 



### **PART-B**

### Section - a

\* Answer the following Questions. [Each carries 2 marks]

[16]

- 1. If f: R  $\rightarrow$  (-1,1), f(x) =  $\frac{10^x 10^{-x}}{10^x + 10^{-x}}$  and f is one-one and onto then find f<sup>-1</sup>(x).
- 2. Minimize z = 200x + 500 y subject to  $x + 2y \ge 10$ ,  $3x + 4y \le 24$  and  $x \ge 0$ ,  $y \ge 0$
- 3. Find  $\int \frac{x^2 e^x}{(x+2)^2} dx$
- **4.** Find the general solution of differential equation  $(1+y^2) dx = (\tan^{-1}y x) dy$ .
- **5.** If  $\overline{a}, \overline{b}$  and  $\overline{c}$  are non-zero vectors and  $\overline{a} \times \overline{b} = \overline{c}$  and  $\overline{b} \times \overline{c} = \overline{a}$  then prove that  $|\overline{b}| = 1$
- 6. The direction cosines 1, m, n, of two lines satisfy 1 + m + n = 0 and  $1^2 m^2 + n^2 = 0$ . Find the measure of the angle between the lines.
- 7. Determine the interval in which following function is strictly increasing or strictly decreasing. f:  $R \rightarrow R$  f(x) =  $2x^3 12x^2 + 18x + 15$
- 8. Prove that  $\begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1+z & 1+3z \end{vmatrix} = 2xyz \left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$

#### Section - b

\* Answer the following Questions. [Each carries 3 marks]

[18]

- 9. Prove that the right circular cone of maximum volume inscribed in a sphere of radius r has altitude  $\frac{4r}{3}$
- 10. Find the area of region bounded by the circles  $x^2 + y^2 = 4$  and  $x^2 + y^2 = 4x$ .
- **11.** Find the image (1,5,1) in the plane x 2y + z + 5 = 0
- 12. Prove that  $\tan \left( \frac{\pi}{4} + \frac{1}{2} \cos^{-1} \frac{a}{b} \right) + \tan \left( \frac{\pi}{4} \frac{1}{2} \cos^{-1} \frac{a}{b} \right) = \frac{2b}{a}$
- 13. A restaurant serves two special dises A and B to its customers consisting of 60% men and 40% women. 80% of men order dish A and the rest order B. 70% of women order B and the rest order A. In what ratio of dishes A to B should the restaurant prepare the two dishes?
- **14.** By using reduced row echelon method, find the inverse of the matrix  $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

#### Section - c

\* Answer the following Questions. [Each carries 4 marks]

[16]

**15.** The temperature of a body in a room is 100°F. After five minutes, the temperature of the body becomes 50°F. After another 5 minutes, the temperature becomes 40°F. What is the temperature of surroudings?

8/09



**16.** Find 
$$\int_{0}^{1} \tan^{-1} \left( \frac{1}{1 - x + x^{2}} \right) dx$$

$$17. \quad \text{Find } \int \frac{1}{x^4 + 1} dx$$

18. If 
$$y = x \log \left(\frac{x}{a + bx}\right)$$
 then prove that  $x^3y_2 = (xy_1 - y)^2$ 

ADI/SAMPLE PAPER 9/09